
Your Cache Has Fallen: Cache-Poisoned Denial-of-Service Attack
Hoai Viet Nguyen, Luigi Lo Iacono

Data & Application Security Group
Cologne University of Applied Sciences, Germany

{viet.nguyen,luigi.lo_iacono}@th-koeln.de

Hannes Federrath
Security in Distributed Systems Group

University of Hamburg, Germany
federrath@informatik.uni-hamburg.de

ABSTRACT
Web caching enables the reuse of HTTP responses with the aim
to reduce the number of requests that reach the origin server, the
volume of network traffic resulting from resource requests, and
the user-perceived latency of resource access. For these reasons,
a cache is a key component in modern distributed systems as it
enables applications to scale at large. In addition to optimizing
performance metrics, caches promote additional protection against
Denial of Service (DoS) attacks.

In this paper we introduce and analyze a new class of web cache
poisoning attacks. By provoking an error on the origin server that
is not detected by the intermediate caching system, the cache gets
poisoned with the server-generated error page and instrumented
to serve this useless content instead of the intended one, rendering
the victim service unavailable. In an extensive study of fifteen web
caching solutions we analyzed the negative impact of the Cache-
Poisoned DoS (CPDoS) attack—as we coined it. We show the practi-
cal relevance by identifying one proxy cache product and five CDN
services that are vulnerable to CPDoS. Amongst them are prominent
solutions that in turn cache high-value websites. The consequences
are severe as one simple request is sufficient to paralyze a victim
website within a large geographical region. The awareness of the
newly introduced CPDoS attack is highly valuable for researchers
for obtaining a comprehensive understanding of causes and coun-
termeasures as well as practitioners for implementing robust and
secure distributed systems.

CCS CONCEPTS
• Security andprivacy→Network security;Denial-of-service
attacks;Web application security.

KEYWORDS
HTTP; Web Caching; Cache Poisoning; Denial of Service

ACM Reference Format:
Hoai Viet Nguyen, Luigi Lo Iacono and Hannes Federrath. 2019. Your Cache
Has Fallen: Cache-Poisoned Denial-of-Service Attack. In 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November
11–15, 2019, London, United Kingdom. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3319535.3354215

CCS ’19, November 11–15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in 2019 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’19), November 11–15, 2019,
London, United Kingdom, https://doi.org/10.1145/3319535.3354215.

1 INTRODUCTION
Contemporary distributed software systems require to scale at large
in order to efficiently handle the sheer magnitude of requests stem-
ming, e.g., from human users all over the globe or sensors scattered
around in an environment. A common architectural approach to
cope with this requirement is to design the system in layers com-
posed of distinct intermediaries. Application-level messages travel
through such intermediate systems on their path between a client
and a server. Common intermediaries include caches, firewalls, load
balancers, document routers and filters.

The caching of frequently used resources reduces network traffic
and optimizes application performance and is one major pillar of
success of the web. Caches store recyclable responses with the aim
to reuse them for recurring client requests. The origin server usually
rules whether a resource is cacheable and under which conditions
it can be provided by a caching intermediate. Cached resources
are unambiguously identified by the cache key that consists most
commonly of the HTTP method and the URL, both contained in the
request. In case a fresh copy of a requested resource is contained in
an intermediate cache, the client receives the cached copy directly
from the cache. By this, web caching systems can contribute to
an increased availability as they can serve client requests even
when the origin server is offline. Moreover, distributed caching
systems such as Content Distribution Networks (CDNs) can provide
additional safeguards against Distributed DoS (DDoS) attacks.

A general problem in layered systems is the different interpre-
tation when operating on the same message in sequence. As we
will discuss in detail in Section 3, this is the root cause for attacks
belonging to the family of "semantic gap" attacks [18]. These at-
tacks exploit the difference in interpreting an object by two or more
entities. In the context of this paper the problem arises when an
attacker can generate an HTTP request for a cacheable resource
where the request contains inaccurate fields that are ignored by
the caching system but raise an error while processed by the origin
server. In such a setting, the intermediate cache will receive an error
page from the origin server instead of the requested resource. In
other words, the cache can get poisoned with the server-generated
error page and instrumented to serve this useless content instead
of the intended one, rendering the victim service unavailable. This
is why we denoted this novel class of attacks "Cache-Poisoned
Denial-of-Service (CPDoS)".

We conduct an in-depth study to understand how inconsistent
interpretation of HTTP requests in caching systems and origin
servers can manifest in CPDoS. We analyze the caching behavior
of error pages of fifteen web caching solutions and contrast them
to the HTTP specifications [13]. We identify one proxy cache prod-
uct and five CDN services that are vulnerable to CPDoS. We find
that such semantic inconsistency can lead to severe security con-
sequences as one simple request is sufficient to paralyze a victim

1

https://doi.org/10.1145/3319535.3354215
https://doi.org/10.1145/3319535.3354215

website within a large geographical region requiring only very
basic attacker capabilities. Finally, we show that the CPDoS attack
raises the paradox situation in which caching services proclaim an
increased availability and proper defense against DoS attacks while
they can be exploited to affect both qualities.

Overall, we make three main contributions:

(1) We present a class of new attacks, "Cache-Poisoned Denial-
of-Service (CPDoS)", that threaten the availability of the web.
We systematically study the cases in which error pages are
generated by origin servers and then stored and distributed
by caching systems. We introduce three concrete attack vari-
ations that are caused by the inconsistent treatment of the
X-HTTP-Method-Override header, header size limits and
the parsing of meta characters.

(2) We empirically study the behavior of fifteen available web
caching solutions in their handling of HTTP requests con-
taining inaccurate fields and caching of resulting error pages.
We find one proxy cache product and five CDN services that
are vulnerable to CPDoS. We have disclosed our findings
to the affected solution vendors and have reported them to
CERT/CC.

(3) We discuss possible CPDoS countermeasures ranging from
cache-ignoring instant protections to cache-adhering safe-
guards.

2 FOUNDATIONS
The web is considered as the world’s largest distributed system.
With the continuous growing amount of data traveling around the
web, caching systems become an important pillar for the scalability
of the web [3]. Web caching systems can occur in various in-path
locations between client and origin server (see Figure 1). Another
distinction point is the classification in private and shared caches.
Private caches are only allowed to store and reuse content for
one particular user. Client-internal caches of web browsers are
one typical example of private cache as they store responses for a
dedicated user only. On the other hand, client-side and server-side
caches—also known as proxy caches—as well as CDNs deployed in
the backbone of the web belong to the family of shared caches, since
they provide content for multiple clients. Some web applications
may also include a server-internal cache. These caching systems
usually support both access policies, i.e., they are able to serve
cached resources to multiple users or to one client exclusively.

The cache policy is governed by the content provider by specify-
ing caching declarations defined in RFC 7234 [11]. The web caching
standard defines a set of control directives for instructing caches
how to store and reuse recyclable responses. The max-age and s-
maxage attributes in the Cache-Control response header define,
e.g., the maximum duration in seconds that the targeted content
is allowed to reside in a cache. The keyword max-age is applicable
to private and shared caches whereas s-maxage only applies to
shared web caching systems. Content providers can also use the
Expires header with an absolute date to define a freshness life-
time. As with max-age, the Expires is adoptable for private and
shared caches. A stored response in a cache is considered as fresh,
if it does not exceed the freshness lifetime specified by max-age,
s-maxage and the Expires header. If a content provider wishes

Web-
Client C

ac
he Web-

ServerC
ac
he

Clien
t-in

ter
na

l C
ac

he

(e.
g w

eb
 br

ow
er

ca
ch

e)

Clien
t-s

ide
Cac

he

(e.
g.

for
ward

 pr
ox

y c
ac

he
)

Serv
er-

sid
e Cac

he

(e.
g.

rev
ers

e p
rox

y c
ac

he
)

Serv
er-

int
ern

al
Cac

he

(e.
g.

WP Sup
er

Cac
he

, E
HCACHE)

Bac
kb

on
e C

ac
he

(e.
g.

CDN)

sharedprivate private/shared

Figure 1: Different types of web caching systems classified
by location and resource access policy [31]

to permit a certain content to be saved by private caches only, it
adds the private directive to the Cache-Control header. Content
providers which do not want that a certain response is stored and
reused by any cache have to include the keyword no-store in the
Cache-Control header. The control directives must-revalidate,
proxy-revalidate and no-cache in the Cache-Control header
instruct how to verify the freshness of a response, in case a con-
tent is expired or no freshness lifetime information is available. All
mentioned control directives enable a content provider to define
caching policies in an explicit manner.

If no explicit caching directive is present in a response, a web
caching system may store and reuse responses implicitly when cer-
tain conditions are met. One requirement which permits caches to
store content implicitly is a response to a GET request. Responses to
unsafe methods including POST, DELETE and PUT are not allowed
to be cached. Moreover, responses to GET method must contain
defined status codes including, e.g., 200 Ok, 204 No Content and
301 Moved Permanently. Here, caches are allowed to derive a
freshness lifetime by using heuristics. Many web applications in-
struct web caching systems to define an implicit freshness lifetime
for images, scripts and stylesheets as these file types are consid-
ered as static content. Static content refers to data which does not
change frequently. Therefore, storing and reusing such resources is
considered as best practice for optimizing the performance.

In some cases, it is also very useful for content providers to
cache certain error messages. For instance, the status code 404
Not Found, which indicates that the origin server does not have
a suitable representation for the requested resource, is permitted
to be cached implicitly. The 405 Method Not Allowed declaring
the request action is not supported for the targeted resource can be
cached implicitly as well.

3 SECURITY THREATS IN WEB CACHING
SYSTEMS

Using web caching systems provides many advantages in terms of
optimizing communication and application performance. However,
much work has shown that web caches can also be exploited to
affect the privacy and reliability of applications. Web cache poi-
soning attacks, e.g., are a serious threat that has been emerging

2

over the past years. Amongst them is the request smuggling [24]
attack which occurs when the web caching system and the origin
server do not strictly conform to the policies specified by RFC 7234.
In this particular attack, the attacker can send a request with two
Content-Length headers to impair a shared cache. Even though
the presence of two Content-Length headers is forbidden as per
RFC 7234, some HTTP engines in caches and origin servers still
parse the request. Due to the duplicate headers, the malformed
request is able to confuse the origin server and the cache so that a
harmful crafted response can be injected to the web caching system.
This malicious response is then reused for recurring requests.

The host of troubles [7] attack is another vulnerability targeting
shared caches. As with the previous attack, it exploits a violation
of the web caching standard that gets interpreted differently by
the involved system layers. Here, the attacker constructs a request
with two Host headers. These duplicate headers induce a similar
misbehavior in the cache and origin server as the request smuggling
attack. Likewise, a malicious response is injected to poison the
cache.

Another attack that targets to poison web caches is the response
splitting [23] attack. Unlike the two aforementioned vulnerabilities,
where a flaw in the shared cache itself is one reason why the attack
is successful, the response splitting attack exploits a parsing issue
in the origin server only. Here, an attacker utilizes the fact that
the HTTP engine of the origin server does not escape or block line
breaks when replaying a request header value in the corresponding
response header. A malicious client can exploit this by dividing
the response in two responses. The aim of this attack is to poison
the intermediate cache with the malicious content contained in the
second response.

James Kettle [22] presented a set of cache poisoning attacks
which result from a misbehavior in web application frameworks
and content management systems respectively. With the intro-
duced techniques, James Kettle was able to compromise shared web
caching systems of well-known companies.

All introduced attacks aim at poisoning shared caches with ma-
licious content that gets served by the victim caches for recurring
requests of benign clients. Private caches such as the web browser
cache are not affected by the mentioned attacks. However, browser
caches are not immune to this class of attacks. Jia et al. [19] present
browser cache poisoning (BCP) attacks. In their study they find
that many desktop web browsers are susceptible to BCP attacks.

The web cache deception [15] attack targets to poison a shared
cache with sensitive content. Here, the attacker exploits a RFC 7234
violation of a shared cache which still stores responses even though
it is prohibited. In combination with an issue in the request rout-
ing of the origin server, the author was able to retrieve account
information of third parties out of the cache.

Triukose et al. [39] showed another attack vector that utilizes
web caching systems to paralyze a web application. Unlike the
presented threats, this attack does not intend to poison a cache with
harmful content or to steal sensitive data. The goal of Triukose et al.
was to provoke a DoS attack with the aid of a mounted CDN. The
authors utilized the infrastructure of a CDN, which comprises of
many collaborating edge cache servers. With the use of a random
string appended to the URL query, Triukose et al. were able to
bypass any edge cache servers so that the CDN forwards every

request to the origin server. To create a DoS attack, the authors
send multiple requests with different random query strings to all
edge cache servers within the CDN. As the edge cache servers
forward all of these requests to the origin server, the huge amount
of requests reaching the origin server generates a high workload
with the consequence that the web application cannot process any
further legitimate request.

The root cause of almost all of the presented attacks lies in the
different interpretation of HTTP messages by two or more distinct
message processing entities, which is known as the semantic gap
[18]. Vulnerabilities stemming from the semantic gap are mani-
fold [7, 23, 37]. In relation to web caches the request smuggling,
host of troubles and response splitting attacks exploit this gap be-
tween a cache and an origin server. Here, a discrepancy in parsing
duplicate headers or line breaks leads to cache poisoning.

In the next section we introduce a new class of attacks against
web caches, the Cache-Poisoned Denial-of-Service (CPDoS) attack.
It exploits the semantic gap between a shared cache and a origin
server for poisoning the cache with error pages. As a consequence,
the cache distributes error pages instead of the legitimate content
after being poisoned. Users perceive this as unavailable resources
or services. In contrast to the DDoS attack introduced by Triukose
et al., CPDoS require only very basic attack skills and resources.

4 POISONINGWEB CACHES WITH ERROR
PAGES

The general attack idea is to exploit the semantic gap in two distinct
HTTP engines—one contained in a shared cache and the other in an
origin server. More specifically, the baseline of the newly introduced
variant of web cache poisoning takes advantage of the circumstance
that the deployed caching system is more lax or focused in process-
ing requests than the origin server (see Figure 2). An attacker can
make use of this discrepancy by including a customized malicious
header or multiple harmful headers in the request. Such headers
are usually forwarded without any changes to the origin server. As
a consequence, the attacker crafted request runs through the cache
without any issue, while the server-side processing results in an
error. Henceforth, the server’s response is a respective error, which
will be stored and reused by the cache for recurring requests. Each
benign client making a subsequent GET request to the infected URL
will receive a stored error message instead of the genuine resource
form the cache.

It is worth noting that one simple request is sufficient to replace
the genuine content in the cache by an error page. This means that
such a request remains below the detection threshold of web appli-
cation firewalls (WAFs) and DDoS protection means in particular,
as they scan for large amounts of irregular network traffic.

The consequences for the web application depend on the content
being illegitimately replaced with error pages. It will always affect
the service’s availability—either parts of it or entirely. The most
harmless CPDoS renders images or style resources unavailable. This
influences the visual appearance of parts of the application. In terms
of functionality it is still working, however. More serious attacks
targeting the start page or vital script resources can render the
entire web application inaccessible instead. Moreover, CPDoS can
be exploited to block, e.g., patches or firmware updates distributed

3

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-Malicious-Header: Some value

GET /index.html HTTP/1.1
Host: example.org
X-Malicious-Header: Some value

HTTP/1.1 400 Bad Request
Content-Length: 10
Content-Type: text/plain

Some error

HTTP/1.1 400 Bad Request
Content-Length: 10
Content-Type: text/plain

Some error

Shared
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 400 Bad Request
Content-Length: 10
Content-Type: text/plain

Some error

3

21

4

6

Benign
Client

5

Figure 2: General construction of the Cache-Poisoned
Denial-of-Service (CPDoS) attack

via caches, preventing vulnerabilities in devices and software from
being fixed. Attackers can also disable important security alerts or
messages on mission-critical websites such as online banking or
official governmental websites. Imagine, e.g., a situation in which
a CPDoS attack prevents alerts about phishing emails or natural
catastrophes from being displayed to the respective user.

When considering the low efforts for attackers, the high proba-
bility of success, the low chance of being detected and the relatively
high consequences of a DoS then the introduced CPDoS attack poses
a high risk. Hence, it is worthwhile investigating under which con-
ditions CPDoS attacks can occur in the wild. For this reasons we
first compiled a complete overview on cacheable error codes as
specified in relevant RFCs [16], [25], [32], [9], [8], [34], [13], [11],
[4] and [5] (see Table 1). Moreover, we analyzed whether popu-
lar proxy caches as well as CDNs do store and reuse error codes
returned from the origin server. This exploratory study has been
conducted with the approach of Nguyen et al. [30, 31]. They pro-
vide a freely available cache testing tool for analyzing web browser
caches, proxy caches and CDNs in a systematically manner. The
cache testing tool also offers a test suite containing 397 test cases
that can be customized by a test case specification language. We
extended the suite by adding new tests for evaluating the caching
of responses containing error status codes. In our study we concen-
trated on the five well-known proxies caches Apache HTTP Server
(Apache HTTPD) v2.4.18, Nginx v1.10.3, Varnish v6.0.1, Apache
Traffic Server (Apache TS) v8.0.2 and Squid v3.5.12 as well as the
CDNs Akamai, CloudFront, Cloudflare, Stackpath, Azure, CDN77,
CDNSun, Fastly, KeyCDN and G-Core Labs.

Even though the cacheability of error codes are well-defined by
the series of RFC specifications given above, our analysis reveals
that some web caching systems violates some of these policies.
For instance, CloudFront and Cloudflare do store and reuse error
messages such as 400 Bad Request, 403 Forbidden and 500
Internal Server Error although being not permitted. The vi-
olation of web caching policies is a severe issue and needs to be
taken into account by content providers and web caching system
vendors. Recent publications have revealed that non-adherence
may otherwise lead to caching vulnerabilities [7, 15, 24]. Following

these observations, we investigated further in order to discover
vulnerable constellations. We were able to identify three concrete
instantiations of the general CPDoS attack that we present in the
following subsections.

4.1 HTTP Method Override (HMO) Attack
The HTTP standard [13] defines a set of request methods for the
client to indicate the desired action to be performed for a given
resource. GET, POST, DELETE, PUT and PATCH are arguably the
most used HTTP methods in web applications and REST-based
web services [36] in particular. Some intermediate systems such as
proxies, load balancer, caches or firewalls, however, only support
GET and POST. This means DELETE, PUT and PATCH requests
are simply blocked. To circumvent this restriction many REST-
based APIs or web frameworks provide auxiliary headers such as X-
HTTP-Method-Override, X-HTTP-Method or X-Method-Override
for passing through an unrecognized HTTP method. These headers
will usually be forwarded by any intermediate systems. Once the
request reaches the server, a method override header instructs the
web application to replace the method in the request line with the
one in the method overriding header value.

Thesemethod override headers are very useful in scenarios when
intermediate systems block distinct HTTP methods. However, if a
web application supports such a header and also uses a shared web
caching system, a malicious client can exploit this semantic gap for
performing a CPDoS attack. In a typical HTTP Method Override
(HMO) attack flow, a malicious client crafts a GET request including
an HTTP method overriding header as shown in Figure 3.

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-HTTP-Method-Override: POST

GET /index.html HTTP/1.1
Host: example.org
X-HTTP-Method-Override: POST

HTTP/1.1 404 Not Found
Content-Length: 29
Content-Type: text/plain

POST on /index.html not found

HTTP/1.1 404 Not Found
Content-Length: 29
Content-Type: text/plain

POST on /index.html not found

Shared
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 404 Not Found
Content-Length: 29
Content-Type: text/plain

POST on /index.html not found

3

21

4

5

6

Benign
Client

Figure 3: Flow and example construction of the HTTP
Method Override (HMO) attack

A CDN or reverse proxy cache interprets the request in Figure 3
as a benign GET request targeting http://example.org/index.html.
Hence, it forwards the request with the X-HTTP-Method-Override
header to the origin server. The endpoint, however, interprets this
request as a POST request, since the X-HTTP-Method-Override
header instructs the server to replace the HTTP method in the
request line with the one contained in the header. Accordingly,
the web application returns a response based on POST. Let’s as-
sume that the target web application does not implement any POST

4

Legend: ✓ cacheable status code according to HTTP Standard, stored by web caching system,# not stored by web caching system, storing not cacheable status code

Error Code Cacheable

A
pa
ch
e
H
TT

PD

A
pa
ch
e
TS

N
gi
nx

Sq
ui
d

Va
rn
ish

A
ka
m
ai

A
zu
re

CD
N
77

CD
N
Su

n

Cl
ou

dfl
ar
e

Cl
ou

dF
ro
nt

Fa
st
ly

G-
Co

re
La
bs

Ke
yC

D
N

St
ac
kp

at
h

400 Bad Request – # # # # # # # # # # # # # #
401 Unauthorized – # # # # # # # # # # # # # # #
402 Payment Required – # # # # # # # # # # # # # # #
403 Forbidden – # # # # # # # # # # # # # #
404 Not Found ✓ # # # # # # # # #
405 Method Not Allowed ✓ # # # # # # # # # # # # #
406 Not Acceptable – # # # # # # # # # # # # # # #
407 Proxy Authentication Required – # # # # # # # # # # # # # # #
408 Request Timeout – # # # # # # # # # # # # # # #
409 Conflict – # # # # # # # # # # # # # # #
410 Gone ✓ # # # # # # # #
411 Length Required – # # # # # # # # # # # # # # #
412 Precondition Failed – # # # # # # # # # # # # # # #
413 Payload Too Large – # # # # # # # # # # # # # # #
414 Request-URI Too Long ✓ # # # # # # # # # # # # #
415 Unsupported Media Type – # # # # # # # # # # # # # # #
416 Requested Range Not Satisfiable – # # # # # # # # # # # # # # #
417 Expectation Failed – # # # # # # # # # # # # # # #
418 I’m a teapot – # # # # # # # # # # # # # # #
421 Misdirected Request ✓ # # # # # # # # # # # # # # #
422 Unprocessable Entity – # # # # # # # # # # # # # # #
423 Locked – # # # # # # # # # # # # # # #
424 Failed Dependency – # # # # # # # # # # # # # # #
426 Upgrade Required – # # # # # # # # # # # # # # #
428 Precondition Required – # # # # # # # # # # # # # # #
429 Too Many Requests – # # # # # # # # # # # # # # #
431 Request Header Fields Too Large – # # # # # # # # # # # # # # #
444 Connection Closed Without Response – # # # # # # # # # # # # # # #
451 Unavailable For Legal Reasons ✓ # # # # # # # # # # # # # # #
499 Client Closed Request – # # # # # # # # # # # # # # #
500 Internal Server Error – # # # # # # # # # # # # #
501 Not Implemented ✓ # # # # # # # # # # # # #
502 Bad Gateway – # # # # # # # # # # # # #
503 Service Unavailable – # # # # # # # # # # # # #
504 Gateway Timeout – # # # # # # # # # # # # #
505 HTTP Version Not Supported – # # # # # # # # # # # # # #
506 Variant Also Negotiates – # # # # # # # # # # # # # # #
507 Insufficient Storage – # # # # # # # # # # # # # # #
508 Loop Detected – # # # # # # # # # # # # # # #
510 Not Extended – # # # # # # # # # # # # # # #
511 Network Authentication Required / Status Code and Captive Portals – # # # # # # # # # # # # # # #
599 Network Connect Timeout Error – # # # # # # # # # # # # # # #

Table 1: Overview of cacheable error status codes according to [4, 5, 8, 9, 11, 13, 16, 25, 32, 34] and empirical study results
showing whether the status codes are cached by the analyzed web caching systems

endpoint for /index.html. In such a case, web frameworks usually
returns an error message, e.g., the status code 404 Not Found
or 405 Method Not Allowed. The shared cache assigns the re-
turned response with the error code to the GET request target-
ing http://example.org/index.html. Since the status codes 404 Not
Found and 405 Method Not Allowed are cacheable according to
the HTTP Caching RFC 7231 as shown in Table 1, caches store and
reuse this error response for recurring requests. Each benign client
making a subsequent GET request to http://example.org/index.html
receives the cached error message instead of the legitimated web
application’s start page.

4.2 HTTP Header Oversize (HHO) Attack
The HTTP standard does not define any size limit for request head-
ers. Hence, intermediate systems, web servers and web frameworks
specify their own limit. Most web servers and proxy caches provide
a request header limit of about 8,000 bytes in order to avoid security
threats such as request header overflow [26] or ReDoS [38] attacks.
However, there are also intermediate systems, which specify a limit
larger than 8,000 bytes. For instance, the Amazon CloudFront CDN
allows up to 24,713 bytes. In an exploratory study we gathered the
default HTTP request header limits deployed by various HTTP
engines and cache systems (see Table 3).

This semantic gap in terms of different request header size limits
can be exploited to conduct a CPDoS attack. To execute an HTTP
Header Oversize (HHO) attack, a malicious client needs to send a
GET request including a header larger than the limit of the origin
server but smaller than the one of the cache. To do so, an attacker
has two options. First, she crafts a request header with many ma-
licious headers. The other option is to include one single header
with an oversized key or value as shown in Figure 4.

The web caching system forwards this request including the
oversized header to the endpoint, since the header size is under
the limit of the intermediary. The web server, however, blocks this
request and returns an error page, as the request exceeds the header
size limit. This returned error page is stored and will be reused for
equivalent requests.

4.3 HTTP Meta Character (HMC) Attack
The HTTP Meta Character (HMC) works similar to the HHO attack.
Instead of sending an oversized header, this attack tries to bypass
a cache with a request header containing a harmful meta charac-
ter. Meta characters can be e.g. control characters such as the line
break/carriage return (\n), line feed (\r) or any other Unicode con-
trol characters. As the \n and \r characters are used by the response

5

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-Oversized-Header: Big value

GET /index.html HTTP/1.1
Host: example.org
X-Oversized-Header: Big value

HTTP/1.1 400 Bad Request
Content-Length: 20
Content-Type: text/plain

Header size exceeded

HTTP/1.1 400 Bad Request
Content-Length: 20
Content-Type: text/plain

Header size exceeded

Shared
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 400 Bad Request
Content-Length: 20
Content-Type: text/plain

Header size exceeded

3

21

4

5

6

Benign
Client

Figure 4: Flow and example construction of the HTTP
header oversize (HHO) attack

splitting attack to poison a cache, some HTTP implementations
block requests containing these symbols.

HTTP implementations, which drop such characters, mostly
return an errormessage signaling that they do not parse this request.
However, there are some cache intermediaries which do not care
about certain control characters. They simply forward the request
including the meta character to the origin server which return
an error code. The resulting error page is then stored and reused
by the cache. This constellation can be exploited by a malicious
client to conduct another form of CPDoS attack. We declare this
vulnerability as HTTP Meta Character (HMC) attack. To do so, the
attacker crafts a request with a meta character, e.g. \n, as shown
in Figure 5. The goal of this example attack in is to fool the origin
server into believing that it is attacked by a response splitting
request. As with the previously presented vulnerabilities, the HMO
request traverses the cache without any issues. Once the request
reaches the endpoint, it is blocked and an according error page is
returned, since theweb server is aware of the implications regarding
suspicious characters such as \n. This error message is then stored
and recycled by the corresponding web caching system.

5 PRACTICABILITY OF CPDOS ATTACKS
In order to explore the existence of CPDoS weaknesses in the wild,
we conducted a series of experiments. A crucial prerequisite for a
potential CPDoS vulnerability is a web caching system that stores
and reuses error pages produced by the origin server. Table 1 high-
lights that Varnish, Apache TS, Akamai, Azure, CDN77, Cloudflare,
CloudFront and Fastly do so. Based on these findings, we conducted
three experiments—one for each introduced CPDoS variant—to ex-
amine whether these intermediate systems are vulnerable to CPDoS
attacks.

5.1 Experiments Setup
The first step to analyze whether CPDoS vulnerabilities exist in
practical environments is to figure out vulnerable HTTP implemen-
tations which are utilized as the origin server. HTTP implementa-
tions on the origin server can be diverse systems including, e.g.,

Attacker

GET /index.html HTTP/1.1
Host: example.org
X-Metachar-Header: \n

GET /index.html HTTP/1.1
Host: example.org
X-Metachar-Header: \n

HTTP/1.1 400 Bad Request
Content-Length: 21
Content-Type: text/plain

Character not allowed

HTTP/1.1 400 Bad Request
Content-Length: 21
Content-Type: text/plain

Character not allowed

Shared
Cache

Origin
Server

GET /index.html HTTP/1.1
Host: example.org

HTTP/1.1 400 Bad Request
Content-Length: 21
Content-Type: text/plain

Character not allowed

3

21

4

5

6

Benign
Client

Figure 5: Flow and example construction of the HTTP Meta
Character (HMC) attack

reverse proxies, web servers, web frameworks, cloud services or
other intermediate systems as well as another cache.

In our first experiment, we analyzed the method override header
support in web frameworks. Additionally, we also evaluated what
error page is returned when sending a method override header
containing an HTTP method which is not implemented by corre-
sponding resource endpoint. Based on the findings in Table 1 where
we know what error page is stored by what web caching systems,
we inferred what web framework in combination with what web
caching systems might be vulnerable to HMO attacks. For this em-
pirical analysis we chose 13 web frameworks based on the most
popular programming languages according to IEEE Spectrum [17].
The analyzed collection of web frameworks includes ASP.NET v2.2,
BeeGo v1.10.0, Django v2.1.7, Express.js v.4.16.4, Flask v1.0.2, Gin
v1.3.0, Laravel v5.7, Meteor.js v1.8, Rails v5.2.2, Play Framework 1
(Play 1) v1.5.1, Play Framework 2 (Play 2) v2.7, Spring Boot v2.1.2
and Symfony v4.2.

The second experiment investigated the request header size lim-
its of the web caching systems in Table 1 as well as the 13 web
frameworks. As the web frameworks ASP.NET and Spring Boot re-
quires an underlying web server to be deployed in production mode,
we additionally also evaluate the request header limits of Microsoft
Internet Information Services (IIS) v10.0.17763.1 and Tomcat v9.0.14.
Moreover, we also evaluated popular cloud services including Ama-
zon S3, Github Pages, Gitlab Pages, Google Storage and Heroku.
As with the first experiment, we also tested which error code is
returned when the request header size limit is exceeded. With these
findings we figured out what HTTP implementations in conjunc-
tion with what web caching systems are potentially vulnerable to
HHO attacks.

The last experiment evaluated the feasibility of HMC attacks.
Here, we evaluated the handling of meta characters in all mentioned
web caching systems, web frameworks, web servers and cloud ser-
vices. To test as many meta characters as possible we collected as
list of 520 potentially irritating strings. This collection contains
control, special, international and other unicode characters as well
as strings comprising attack vectors including cross site scripting
(XSS), SQL injections and remote execution attacks. The goals of

6

this study was to analyze what characters and strings are blocked,
sanitized and processed or forwarded without any issues. Moreover,
we also evaluated what error page is triggered when a character or
string is blocked. Based on our findings we were able to conclude
what characters and what symbols need to be send to what constel-
lation of HTTP engine and web caching system to induce an HMC
attack.

5.2 Feasibility of HMO attacks
Table 2 shows the results of the first experiment. It highlights that
Symfony, Laravel and Play 1 support method override headers by
default. Django and Express.js instead do not consider method over-
ride headers by default, but provide plugins to add this feature.
Flask does not offer any plugin for the integration of method over-
ride headers, but provides an official tutorial how to enable it [14].
Table 2 also points out what error code is returned when the web
framework receives a method override header with an action that
is not implemented by the addressed resource endpoint.

Even though the web frameworks with a method overriding
header support return cacheable error codes, we observed that only
Play 1 and Flask are vulnerable to HMO CPDoS attacks. However,
both web frameworks can only be affected if Fastly, Akamai, Cloud-
flare, CloudFront, CDN77 and Varnish are used as intermediate
cache. The reason why these web frameworks are vulnerable lies in
the fact that Play 1 and Flask do perform an HTTP method change
for GET as well as POST requests in case an HTTP method override
header is present. Laravel, Symfony and the plugins for Django and
Express.js are not vulnerable to HMO CPDoS, since they ignore
HTTP method override headers in GET requests and restrict them-
selves to transform the method for POST requests only. Attackers
cannot poison the tested web caching systems with a POST request,
since responses to POST requests are not stored by any of them.

Malicious clients can attack web applications implemented with
the Play 1 by sending a GET request with the method override
header including, e.g., POST as value. If the corresponding resource
endpoint does not implement any functionality for POST, then the
web framework returns the error code 404 Not Found. Akamai,
Fastly, CDN77, Cloudflare, CloudFront and Varnish cache this status
code by default (see Table 1). Flask is also vulnerable to HMO
CPDoS attacks, if the support of HTTP method override headers
is implemented with the official tutorial of the web framework’s
website. However, HMO attacks are only possible, if Akamai and
CloudFront are utilized as CDN, since Flask returns the status code
405 Method Not Allowed. Akamai and CloudFront are the only
analyzed web caching systems, which store and reuse error pages
with this code.

5.3 Feasibility of HHO attacks
Table 3 depicts the results of our study on request header size limits.
If available, it moreover lists the request header size limit specified
in the documentation of the corresponding HTTP implementation.
Note, that we omit the web frameworks ASP.NET, Django, Flask,
Laravel, Rails, Symfony and Spring Boot in this table, as we found
out that the request header limits depend on the used web server
and deployment environment.

Our obtained results reveal many varieties in terms of request
header size limits among the HTTP implementations. The evalu-
ation shows that CloudFront provides a request header size limit,
which is much higher than the one of the many other HTTP im-
plementations we tested. Moreover, Amazon’s CDN also caches
the error code 400 Bad Request by default (see Table 1), which is
triggered by most of the HTTP implementations when the request
header size limit is exceeded. Hence, in our experiments we figured
out that when using CloudFront as CDN any HTTP implementa-
tion that has a request header size limit lower than CloudFront and
returns the status code 400 Bad Request if the limit is exceeded
is vulnerable to HHO CPDoS atacks. For instance, the web caching
systems Apache HTTPD and Nginx, which can also be used as web
server or reverse proxy provide a lower request header size limit
than CloudFront.

Besides the fact that Apache HTTPD and Nginx are amongst
the most used web servers according to a survey of Netcraft [28],
both systems are often deployed with other intermediate systems.
When using one of these HTTP implementations in conjunction
with CloudFront, these systems can be affected by an HHO CPDoS
attack. This also means if Apache HTTPD and Nginx is configured
as intermediate reverse proxy in front of other web applications,
then these systems are vulnerable to HHO CPDoS as well. More-
over, Apache HTTPD and Nginx are often utilized as web server
and deployment environment for web frameworks such as Rails,
Django, Flask, Symfony and Lavarel. All these web frameworks
are vulnerable to HHO CPDoS likewise if they are deployed with
Apache HTTPD or Nginx. Spring Boot and ASP.NET can also be
affected by HHO CPDoS attacks, as both web frameworks require
a web server in production mode. Spring Boot can be deployed
with Tomcat and ASP.NET can use IIS as the underlying deploy-
ment environment. Tomcat and IIS have request header size limits
lower than CloudFront. Both web servers return the error 400 Bad
Request for oversized header likewise. The cloud service Heroku
is another deployment platform for web frameworks. It supports,
e.g., Django, Flask, Laravel, Rails, Laravel and Symfony. As Heroku
provides a request header size limit lower than CloudFront, web
applications using the cloud service in conjunction with the CDN
can be vulnerable as well. Other HTTP implementations which can
be affected by HHO CPDoS attacks when using CloudFront as CDN
are Play 2 as well as the cloud services Amazon S3, Github Pages
and Heroku. Play 1 is also vulnerable to HHO CPDoS attacks, even
though it does not return an error page when the request header
size limit is exceeded. The web framework does not return any
response if it receives an oversized header. Here, the TCP socket
remains open until the web application shuts down. If CloudFront
notices such an idle communication channel, then the CDN returns
the error code 502 Bad Gateway. This error message is stored
and reused for recurring requests likewise. According to our ex-
periments, Google storage in conjunction with CloudFront is not
vulnerable to HHO CPDoS although the cloud service has lower
request header size limit than the CDN. Google storage returns the
error code 413 Payload Too Large for oversized headers and this
error message is not cached by any of the analyzed web caching
systems. Table 3 also contains a result obtained when using Nginx
with the WAF plugin ModSecurity. In such a configuration, con-
ducting a successful HHO CPDoS attack is even easier as without

7

Legend:# must be implemented manually, by default,G# not by default but by extension
Web framework Programming lang. Method overriding support Error code when method not implemented
Rails Ruby # undefined
Django Python G# 405
Flask Python G# 405
Express.js JavaScript G# 405
Meteor.js JavaScript # undefined
BeeGo Go # undefined
Gin Go # undefined
Play 1 Java 404
Play 2 Java/Scala # undefined
Spring Boot Java # undefined
Symfony PHP 405
Lavarel PHP 405
ASP.NET C# # undefined

Table 2: HTTP method overriding headers support of tested web frameworks

HTTP implementation Documented limit Tested limit Limit exceed error code
CDN Akamai undefined 32,760 bytes No Response

Azure undefined 24,567 bytes 400
CDN77 undefined 16,383 bytes 400
CDNSun undefined 16,516 bytes 400
Cloudflare undefined ≈ 32,395 bytes 400
Cloudfront 20,480 bytes ≈ 24,713 bytes 494
Fastly undefined 69,623 bytes No Response
G-Core Labs undefined 65,534 bytes 400
KeyCDN undefined 8,190 bytes 400
StackPath undefined ≈ 85,200 bytes 400

HTTP engine Apache HTTPD 8,190 bytes 8,190 bytes 400
Apache HTTPD + ModSecurity undefined 8,190 bytes 400
Apache TS 131,072 bytes 65,661 bytes 400
Nginx undefined 20,584 bytes 400
Nginx + ModSecurity undefined 8,190 bytes 400
IIS undefined 16,375 bytes 400, (404)
Squid 65,536 bytes 65,527 bytes 400
Tomcat undefined 8,184 bytes 400
Varnish 8,192 bytes 8,299 bytes 400

Cloud Service Amazon S3 undefined ≈ 7,948 bytes 400
Github Pages undefined 8,190 bytes 400
Gitlab Pages undefined >500,000 bytes undefined
Google Cloud Storage undefined 16,376 bytes 413
Heroku 8,192 bytes 8,154 bytes 400

Web Framework BeeGo undefined >500,000 bytes undefined
Express.js undefined 81,867 bytes No Response
Gin undefined >500,000 bytes undefined
Meteor.js undefined 81,770 bytes 400
Play 1 undefined 8,188 bytes No Response
Play 2 8,192 bytes 8,319 bytes 400

Table 3: Request header size limits of HTTP implementations

the security extension. The tested request header limit of Nginx
is around 20,000 bytes but when ModSecurity is added to both
systems, it reduces the restriction to 8,190 bytes. Even though the
usage of ModSecurity should actually avoid web application attacks
such as DoS, it eases to conduct an HHO CPDoS attack in this case.

As mentioned before, IIS and web frameworks such as APS.NET
running on this web server are vulnerable to HHO CPDoS attacks
when using CloudFront as CDN. However, in certain circumstances,
they might also be vulnerable when Akamai, Fastly, CDN77, Cloud-
flare and Varnish are utilized. The IIS web server provides an option
to set a size limit for a distinct request header. Some web applica-
tions require such a configuration option to block, e.g., an oversized
Cookie header. If this restriction is defined for a request header and
this limit is exceeded, then the web server return the error code
404 Not Found. This error message is cached by Akamai, Fastly,
CDN77, CloudFront, Cloudflare and Varnish.

5.4 Feasibility of HMC attacks
Table 4 shows the results of our third experiments where we ana-
lyzed the handling of strings containing meta characters. For the
sake of readability, we only list the characters and strings that are

blocked or sanitized by at least one of the tested HTTP implemen-
tations. Moreover, we omit the web frameworks ASP.NET, Django,
Flask, Laravel, Spring Boot and Symfony in this table, since the
handling of meta characters depends on the used web server and
deployment environment.

The evaluation highlights that the many analyzed systems con-
sider control characters as a threat. Suspicious characters or strings
are either blocked by the denoted error code or are sanitized from
the request header. However, the handling of meta strings and
characters are very diverse. For instance, CloudFront blocks the
character \u0000 and sanitizes \n, \v, \f, \r, but forwards other
control characters such as \a, \b and \e without modifying them.
If Apache HTTPD, IIS or Varnish is used with CloudFront, then
the corresponding systems block the forwarded header contain-
ing forbidden characters with the status code 400 Bad Request.
CloudFront stores such an error message. This means when us-
ing CloudFront as CDN, all tested HTTP implementations, which
blocked harmful strings and characters that are not rejected or
sanitize by CloudFront, are vulnerable to HMC CPDoS attacks. Be-
sides Apache HTTPD, IIS and Varnish, this includes Github Pages,
Gitlab Pages, BeeGo, Gin, Meteor.js and Play 2. Express.js is vul-
nerable to HMC CPDoS attacks as well, even though it does not
block any tested string by an error code. The issue here is similar to

8

Legend:# processed/forwarded without error and sanitization
Meta character in request header Akamai Azure CDN77 CDNSun Cloudflare Cloudfront Fastly G-Core Labs KeyCDN Stackpath
\u0000 400 400 400 400 400 400 No Response 400 400 Sanitized
\u0001 ... \u0006 # 400 Sanitized # # # 400 # # #
\a # 400 Sanitized # # # 400 # # #
\b # 400 Sanitized # # # 400 # # #
\t # # # # # # # # # #
\n # 400 Sanitized Sanitized Sanitized Sanitized Sanitized Sanitized # Sanitized
\v # 400 Sanitized # # Sanitized 400 # # Sanitized
\f # 400 Sanitized # # Sanitized 400 # # Sanitized
\r # 400 Sanitized # Sanitized Sanitized 400 Sanitized # Sanitized
\u000e ... \001f, \u007f # 400 Sanitized # # # 400 # # #
Multiple Unicode control character
(e.g.\u0001\u0002)

400 Sanitized # # # 400 # #

(){0;}; touch /tmp/blns.shellshock1.fail; # # # # 403 # # # # #
() { _; } >_[$($())] { touch
/tmp/blns.shellshock2.fail; }

403 # # # #

Meta character in request header Apache HTTPD +
(ModSecurity)

Apache TS Nginx +
(ModSecurity)

IIS Tomcat Squid Varnish Amazon S3 Google
Storage

\u0000 400 400 400 400 # # 400 # #
\u0001 ... \u0006 400 # # 400 # # 400 # #
\a 400 # # 400 # # 400 # #
\b 400 # # 400 # # 400 # #
\t # # # 400 # # 400 # #
\n 400 # Sanitized # # # Sanitized # #
\v 400 # # 400 # # 400 # #
\f 400 # # 400 # # 400 # #
\r 400 # # 400 # # 400 # #
\u000e ... \001f, \u007f 400 # # 400 # # 400 # #
Multiple Unicode control character
(e.g.\u0001\u0002)

400 # # 400 # # 400 # #

(){0;}; touch /tmp/blns.shellshock1.fail; # # # # # # # # #
() { _; } >_[$($())] { touch
/tmp/blns.shellshock2.fail; }

#

Meta character in request header Github Pages Gitlab Pages Heroku Beego Express.js Gin Meteor Play 1 Play 2
\u0000 No Response 400 # 400 # 400 400 # 400
\u0001 ... \u0006 400 400 # 400 # 400 400 # 400
\a 400 400 # 400 # 400 400 # 400
\b 400 400 # 400 # 400 400 # 400
\t 400 # # # # # # # #
\n 400 # 400 # # # # # #
\v 400 400 # 400 # 400 400 # 400
\f 400 400 # 400 # 400 400 # 400
\r 400 400 # 400 # 400 # # 400
\u000e ... \001f 400 400 # 400 # 400 400 # 400
\u0007f 400 400 # 400 # 400 400 # #
Multiple Unicode control character
(e.g.\u0001\u0002)

400 400 # 400 No Response 400 No Response # 400

(){0;}; touch /tmp/blns.shellshock1.fail; # # # # # # # # #
() { _; } >_[$($())] { touch
/tmp/blns.shellshock2.fail; }

#

Table 4: Meta string handling in request header of HTTP implementations

the problem of oversized header in Play 1. When sending a request
header with multiple control characters Express.js does not reply
at all. Accordingly, CloudFront returns the error message 502 Bad
Gateway to the client. This error code is also stored and reused for
subsequent requests.

5.5 Consolidated Review of Analysis Results
Based on our findings of all three experiments, we detected many
CPDoS attack vectors in various different combinations of web
caching systems and HTTP implementations. Most of the attacks
are executable on CloudFront as shown in Table 5. This overview
summarizes what pair of web caching system and HTTP implemen-
tation is vulnerable to what CPDoS attack. The experiments’ results
show that web applications using CloudFront are highly vulnerable
to CPDoS attacks, since the CDN caches the error code 400 Bad
Request by default. Many server-side HTTP implementations re-
turn this error message when sending a request with an oversized
header or meta characters. The likelihood to be affected by CPDoS
attacks when utilizing the other analyzed caches including Varnish,
Akamai, CDN77, Cloudflare or Fastly is rather lower. These web
caching systems do store the error code 404 Not Found but not
400 Bad Request. The caching of error pages with status code 404

Not Found is a proper and compliant approach for optimizing web-
site performance. In this case, there is no malfunction in Varnish,
Akamai, CDN77, Cloudflare and Fastly. The reason for a successful
CPDoS attack lies in the fact that, Play 1 and Microsoft IIS allows to
provoke 404 Not Found error pages on resource endpoints which
do not return an error message when sending a benign request.

5.6 Practical Impact
In the first step to estimate the practical impact of CPDoS attacks, we
determined the amount of websites that use one of the vulnerable
web caching systems and HTTP implementations listed in Table 5.
Our approach to find vulnerable real world websites is to inspect
the response header.

Many HTTP implementations append informational headers to
the response for declaring that a message is processed by this entity.
For instance, CloudFront includes the values Hit from CloudFront
or Miss from CloudFront to the x-cache header andMicrosoft IIS
adds the string Microsoft-IIS to the Server header. By means of
this information an attacker can unambiguously detect what cache
or what server-side HTTP implementation is used by the target web
application respectively. Based on this approach, we analyzed the
websites of the U.S. Department of Defense (DoD)1 and the Alexa
1https://dod.defense.gov/About/Military-Departments/DoD-Websites/

9

https://dod.defense.gov/About/Military-Departments/DoD-Websites/

Legend: # no CPDoS attack dectected
A
pa
ch
e
H
TT

PD

A
pa
ch
e
TS

N
gi
nx

Sq
ui
d

Va
rn
ish

A
ka
m
ai

A
zu
re

CD
N
77

CD
N
Su

n

Cl
ou

dfl
ar
e

Cl
ou

dF
ro
nt

Fa
st
ly

G-
Co

re
La
bs

Ke
yC

D
N

St
ac
kP

at
h

Web caching system

Origin server HTTP implemenation
HHO, HMC # # # # Apache HTTPD + (ModSecurity)
Apache TS
HHO # # # # Nginx + (ModSecurity)
(HHO) (HHO) # (HHO) # (HHO) HHO, HMC (HHO) # # # IIS
HHO # # # # Tomcat
Squid
HHO, HMC # # # # Varnish
HHO # # # # Amazon S3
Google Cloud Storage
HHO, HMC # # # # Github Pages
HMC # # # # Gitlab Pages
HHO # # # # Heroku
(HHO) (HHO) # (HHO) # (HHO) (HHO), (HMC) (HHO) # # # ASP.NET
HMC # # # # BeeGo
(HHO), (HMC) # # # # Django
HMC # # # # Express.js
(HMO) # # # # HMO, (HHO), (HMC) # # # # Flask
HMC # # # # Gin
(HHO), (HMC) # # # # Laravel
HMC # # # # Meteor.js
HMO HMO # HMO # HMO HHO, HMO HMO # # # Play 1
HHO, HMC # # # # Play 2
(HHO), (HMC) # # # # Rails
HHO # # # # Spring Boot
(HHO), (HMC) # # # # Symfony

Table 5: CPDoS vulnerability overview

Top 500 websites. In addition to this, we used the Google Big Query
service to investigate over 365 million URLs stored in the HTTP
Archive data set httparchive.summary_requests.2018_12_15_-
desktop. Table 6 shows the number of websites and URLs of the
DoD, the Alexa Top 500 and the HTTP Archive where the response
header indicates that the content is processed by a vulnerable HTTP
implementation.

DoD Alexa Top 500 HTTP Archive
Total number of web sites/URLs 414 500 365.112.768
Varnish 2 40 4.658.950
Akamai 2 38 1.031.535
CDN77 0 0 321.456
Cloudflare 7 34 18.236.800
CloudFront 8 23 12.140.461
Fastly 0 9 4.013.578
IIS 27 9 17.792.692
Flask 0 0 5.765
Play 1 0 0 10.491

Table 6: Number of websites/URLs using Varnish, Akamai,
CDN77, Cloudflare, CloudFront, Fastly, IIS, Flask and Play 1

The results highlight that eight websites of the DoD, 23 of the
Alexa Top 500 and over twelve million URLs stored in the men-
tioned data set of the HTTP Archive are served via CloudFront.
Moreover, all eight websites of the DoD, 16 websites of the Alexa
Top 500 and over nine million URLs of the HTTP Archive point out
that CloudFront in combination with Apache HTTPD, Nginx, Ama-
zon S3, Microsoft IIS and Varnish is used. Our experiments revealed
that these constellations are vulnerable to CPDoS attacks (see Ta-
ble 5). However, it is very difficult to estimate the exact number
of vulnerable websites without inspecting each of them individu-
ally. Moreover, the experiments have been done with the default
configuration and without taking any other intermediate system
into account. It is, however, very common that content providers

change the default configuration of a cache in order to adapt the
caching policy to the respective needs. Moreover, real world web
applications also utilize other intermediate systems such as load
balancers or WAFs. All these settings influence the practicability of
CPDoS attacks in any direction. To get a clearer picture on the real
life impact of CPDoS attacks, we took some samples based on the
URLs from the Alexa Top 500, DoD, and HTTP Archive data sets.
Overall, we found twelve vulnerable resources within a few days.
These also include mission-critical websites such as ethereum.org,
marines.com, and nasa.gov which use CloudFront as CDN. At all
these websites, we were able to block multiple resources including
scripts, style sheets, images, and even dynamic content such as the
start page. The visual damage of a CPDoS attack is shown by the
Figures 6 and 7 in the Appendix A. In Figure 6, the CPDoS attack is
first applied to an image referenced in the start page of the victim
website ethereum.org. Then the style sheet file is denied and finally,
an error page replaces the whole start page. Figure 7 illustrates the
affected start page of marines.com which displays an error page to
the user instead of the genuine content. Moreover, we were also
able to conduct a successful CPDoS attack on the update files of
IKEA’s Smart Home devices. IKEA uses CloudFront in conjunction
with S3 to distribute remote control firmware and driver updates
for their wireless bulbs. As CloudFront in combination with S3 is
vulnerable to HHO CPDoS attacks, an attacker can block the re-
mote control devices of IKEA from fetching security patches. These
evidences show that CPDoS attacks can affect static as well as dy-
namic resources. Most of the vulnerable websites use CloudFront
as CDN. However, the real world impact of CPDoS attacks is not
only bound to CloudFront. We also found vulnerable websites in
our sample which utilize other CDNs such as Akamai or Cloudflare
in conjunction with Play 1. We have uncovered these examples in
a few days only. An advanced attacker with political and financial
motivation is easily able to gather much more vulnerable resources

10

as they only need to investigate the response headers in order to
estimate whether a target website or resource is potentially vulnera-
ble to CPDoS attacks. Moreover, the freely available HTTP Archive
data sets via Google Big Query include millions of URLs which
can be investigated by an attacker. For instance, HTTP Archive
data set httparchive.summary_requests.2018_12_15_desktop
contains over 9 millions URLs which we considered as highly vul-
nerable since the response headers of these resources indicate that
CloudFront in conjunction with Apache HTTPD, Nginx, Amazon
S3, Microsoft IIS, and Varnish is used. Among them are also many
critical websites and resources including Amazon itself, the website
dowjones.com, as well as Logitech which distributes firmware via
CloudFront.

5.7 Practical Considerations
Caches are only vulnerable to CPDoS attacks if they store and reuse
error pages. Web caching systems such as Stackpath, CDNSun,
KeyCDN and G-Core labs cannot be affected by CPDoS attacks,
since these CDNs do not cache error messages at all. This is also
true for Apache HTTPD, Nginx and Squid when using them as an
intermediate cache without involving any other vulnerable web
caching systems.

As with other cache poisoning vulnerabilities, CPDoS attacks
are only possible when a vulnerable web caching system does not
contain a fresh copy of the to be attacked resource. That is, if a
shared cache still maintains and reuses a stored fresh response for
recurring requests, a malicious request is not able to poison the
intermediary. The web caching system serves all requests to the
target resource. None of the requests are forwarded to the origin
server until the freshness lifetime is expired, so that no error page
can be triggered. This means if a cache still owns a fresh response,
an attacker has to wait until the cached content is stale. The most
straightforward information to find out the expiration time is the
Expires header which indicates the absolute expiration date. If the
response does not contain an Expires header or the expiration time
of this header is overridden by the max-age or s-maxage directive
control directive, the attacker can make use of the Age header. The
Age header declares the seconds of stay in the cache. The value of the
Age header subtracted from the value of the max-age or s-maxage
directive is the relative expiration time of the cached response. If
the cached response is expired, the attacker’s request must be the
very first request so that it can reach the origin server to trigger
an error page. To increase the likelihood for being the first request,
we send automatized requests with a one second interval when the
response is close to expire. With this technique we were able to
successfully attack all twelve vulnerable websites of our spot check
experiment. Sending regularly performed requests with one second
distance of time is also a useful approach for cached responses
which does contain any expiration time information, i.e., resources
which are implicitly cached. Such responses usually do not contain
any max-age or s-maxage directives and Expire headers. Here,
the attacker needs to send automatized requests until one of the
requests is forwarded to the origin server. Moreover, automatized
requests with a one second interval are not considered as harmful
even when they are sent over a long time, since health checks
requests can also have the same interval. We tested this technique

on several CDNs which also included WAFs and DDoS protections.
Since we only used a single client to perform the attack, none of
CDNs detected the malicious requests.

Many web applications configure the proxy cache or the CDN
to serve the whole website. This means all resources including dy-
namic pages and static files are forwarded and processed by the
cache. To exclude dynamic pages from being implicitly cached,
content providers include no-store or max-age=0 to the response
header, so that each request must be forwarded to the origin server.
If a vulnerable cache in conjunction with a vulnerable server-side
HTTP implementation is used, these resources can be attacked with-
out the need to wait and any automation of sending requests. One
single malicious request is enough to paralyze the target resource,
since each request is forwarded to the origin server. Vulnerable
websites which configure the CDN to serve all resources are, e.g.,
marines.com, ethereum.org and nasa.gov.

There also many web applications which only configure the
cache to store and reuses responses of certain URL paths such as for
static files in the javascript or images directory. Other URL paths
are accordingly not cached at all. Many content providers also
maintain subdomains (e.g. static.example.org) or a specific domain
for static files which are served via a cache. In these cases, only
resources within the cached URL paths or the specific domain can be
affected. To find out whether a distinct response traverses a cache,
an attacker can inspect the response headers. For instance, the Age
response header indicate that a cache is utilized. The main website
of IKEA (ikea.com) does not use CloudFront or any other vulnerable
HTTP implementations which indicates that this homepage is most
likely not vulnerable to CPDoS attacks. However, IKEA uses a
specific domain (fw.ota.homesmart.ikea.net) in conjunction with
CloudFront to host the update files of their Internet of Things
devices.

Another important limitation of CPDoS attacks is that the web
caching systems except Fastly do only cache error pages for few
minutes or seconds. Fastly stores and reuses the error page for one
hour. If this time span is over, then the first benign request to the
target resource is forwarded to origin server and refreshed again.
Still, to extend the duration of CPDoS attacks, malicious clients can
resend harmful requests in accordance to the fixed interval.

6 RESPONSIBLE DISCLOSURE
All discovered vulnerabilities have been reported to the HTTP
implementation vendors and cache providers on February 19, 2019.
We worked closely with these organizations to support them in
eliminating the detected threats. We did not notify the website
owners directly, but left it to the contacted entities to inform their
customers.

Amazon Web Services (AWS). We reported this issue to the AWS-
Security team. They confirmed the vulnerabilities on CloudFront.
The AWS-Security team stopped caching error pages with the status
code 400 Bad Request by default. However, they took over three
months to fix our CPDoS reportings. Unfortunately, the overall
disclosure process was characterized by a one-way communica-
tion. We periodically asked for the current state, without getting
much information back from the AWS-Security team. They never
contacted us to keep us up to date with the current process. For

11

example, we only got noticed about the changed default caching
policy by checking back the revision history of their respective
documentation hosted in Github. Thus, we do not have much in-
formation on the noticeable amount of time required to resolve
our reported CPDoS vulnerability, although having asked for it
explicitly. We can only assume that this delay has to do with the
large number of affected users they had to test after implementing
according countermeasures. Moreover, Amazon suggests users to
deploy an AWS WAF in front of the corresponding CloudFront
instance. AWS WAF allows defining rules which drop malicious
requests before they reach the origin server.

Microsoft. Microsoft was able to reproduce the reported issues and
published an update to mitigate this vulnerability. They assigned
this case to CVE-2019-0941 [27] which is published in June 2019.

Play 1. The developers of the Play 1 confirmed the reported issues
and provided a security patch which limits the impact of the X-
HTTP-Method-Override header [6]. The security patch is included
in the versions 1.5.3 and 1.4.6. Older version are not maintained by
this security patch. Web applications which use older versions of
Play 1 therefore should update to the newest versions in order to
mitigate CPDoS attacks.

Flask. We reported the HMO attack to the developer team of Flask
multiple times. Unfortunately, we have not received any answer
form them so far and hence we have to assume, that Flask-based
web applications are still vulnerable to CPDoS.

7 DISCUSSION
Using malformed requests to damage web applications is a well-
known threat. Request header size limits and blocking meta charac-
ters are therefore vital means of protection to avoid known cache
poisoning attacks as well as other DoS attacks such as request
header buffer flow [26] and ReDoS [38]. Also, many security guide-
lines such as the documentation of Apache HTTPD [2], OWASP
[35], and the HTTP standard [12] recommend to block oversized
headers and meta characters in headers. CPDoS attacks, however,
aims to beat these security mechanisms with their own weapons.
HHO and HMC CPDoS attacks intentionally send a request with
an oversized header or harmful meta character with the intent to
get blocked by an error page which will be cached. Along these
lines, it is interesting to see that CDN services, which claim to be
an effective measure to defeat DoS and especially DDoS attacks,
desperately fail when it comes to CPDoS.

According to our experiment results, most of the presented at-
tack vectors are only feasible when CloudFront is deployed as the
underlying CDN, since it is the only analyzed cache which illicitly
stores the error code 400 Bad Request. Such a non-conformance
is the main reason for the HHO and HMC attacks. The other major
issue for both attacks is fact that the cache forwards oversized head-
ers and requests with harmful meta characters. Violations of the
HTTP standard and implementation issues are also the main rea-
son for many other cache-related vulnerabilities including request
smuggling, host of troubles, response splitting, and web deception
attacks. The HMO CPDoS attack is, however, a vulnerability which
does not exploit any implementation issues and violations of the
HTTP standard. The X-HTTP-Method-Override header or similar

headers are legitimate auxiliaries to tunnel HTTP methods which
are not supported by WAFs or web browsers. Play 1 and Flask re-
turns the error code 404 Not Found or 405 Method Not Allowed
when an unsupported action in X-HTTP-Method-Override header
is received. Both error messages are allowed to be cached according
to RFC 7231. Akamai, CDN77, Fastly, Cloudflare, CloudFront, and
Varnish follow this policy and cache such error codes. If these web
caching systems are used in combination with one of the mentioned
web frameworks, these combinations have an actual risk of falling
victim to CDPoS attacks, even though they are in conformance with
the HTTP standard and do not have any implementation issues.
Therefore, the HMO CPDoS attack can be considered as a new kind
of cache poisoning attack which does not exploit any implementa-
tion issues or RFC violations. This shows that CPDoS attacks do
not always result from programming mistakes or unintentional
violations of specification policies, but can also be the exploit of
the conflict between two legitimate concepts. In case of HMO CP-
DoS attacks, this conflict refers to the usage of method overriding
headers and the caching of allowed error messages.

Even though we did not detect attack vectors in other web
caching systems and HTTP implementations, this does not mean
that other constellations are not vulnerable to CPDoS attacks. As
shown by Table 1 eight of fifteen tested web caching systems do
store error pages and some of them even cache error pages which
are not allowed. If an attacker is able to initiate other error pages
or even cacheable error code at the target URL, then she may af-
fect other web caching systems and HTTP implementations with
CPDoS attacks as well. James Kettle, for instance, discovered two
other forms of CPDoS attacks which fortunately are only successful
due to specific implementation issues of the corresponding web
application. The first CPDoS attack utilized the X-Forwarded-Port
header [21]. This header usually informs the endpoint about the
port that the client uses to connect to the intermediate system,
which operates in front of the origin server. In the revealed attack,
the cached response contained the redirect. A DoS was caused by
the user’s browser trying to follow the cached redirect and timing
out. The second attack was able to create a DoS at www.tesla.com
due to a faulty WAF configuration [20]. Tesla configured their WAF
to block certain strings which have been used by other cache poison
attacks. Unfortunately, requests with such strings were blocked by a
403 Forbidden error page which was also cached. This shows that
HMO, HHO, and HMC are not the only variations of CPDoS attacks.
There are, certainly, many other ways to provoke an error page on
the origin server. To the best of our knowledge and according to
our experiences in developing web applications, it is not unlikely
to provoke an 500 Internal Server Error status code or other
5xx errors in real world web applications and services. Akamai and
Cloudflare do cache 5xx error codes. At this point, we did not find
a way to provoke such error messages in our experiments.

Moreover, we need to consider that contemporary web appli-
cations and distributed systems in particular are usually layered.
That is, they often utilize other intermediate components such as
load balancer, WAFs or other security gateways which are located
between cache and endpoint. Such middleboxes or middleware
may provide other request header size limits, meta character han-
dling or header overriding features. Such systems may also react to
malicious requests with error codes that could be cached.

12

8 COUNTERMEASURES
The most intuitive, as well as effective countermeasure, against CP-
DoS attacks is to exclude error pages from being cached. However,
content providers which exclude cacheable error codes such as 404
Not Found from being stored, need to consider that this setting
may impair the performance and scalability. There two ways to
exclude error pages from being cached. The first approach is to
configure the web caching systems to omit the storage of error
responses. Akamai, CDN77, CloudFront, CloudFront, Fastly, and
Varnish provide options to do so. Content providers can also add the
no-store directive to the Cache-Control response header which
prohibits all caches from storing the content. According to our own
evaluation, all tested web caching systems except CloudFront hon-
ored the keyword no-store in error pages and still do so. At the
time of our experiments in February 2019, CloudFront cached error
pages for five minutes by default and even did so when no-store
was included in the error response header. The only way to avoid
storing error pages in CloudFront was to disable each error code
from caching via the CDN’s configuration interface. Fortunately,
AWS changed the behavior of caching error pages after our CPDoS
reporting. One important change is that 400 Bad Request error
pages are not cached by default anymore. CloudFront only caches
400 Bad Request error messages if they include a max-age or
s-maxage control directive [1].

As mentioned before, the disobey of the HTTP standard in terms
of ignoring control directives is the main cause for many cache-
related vulnerabilities. Beside the consideration of cache-related
control directives, web caching systems must, therefore, only store
error codes which are permitted by the HTTP standard. Status codes
such as 400 Bad Request are not allowed to be cached, since this
error message is only dedicated to a request which is malformed or
invalid. Other error codes such as 404 Not Found, 405 Method Not
Allowed or 410 Gone can be cached, since they provide error infor-
mation which is valid for all clients. Also, HTTP implementations
have to use the appropriate status code for the corresponding error
case. Table 3 shows that almost all tested system return the status
code 400 Bad Request for an oversized request header. IIS even
replies with status the cacheable 404 Not Found error code when a
limit for a specific request header is exceeded. Both error messages
are not the appropriate one for requests exceeding the header size
limit. According to HTTP standard, the appropriate error code is
431 Request Header Fields Too Large. Such error information
is not stored and reused by any of the tested web caching systems.
To test the compliance and behavior of caches, we recommend to
use the cache testing tool of Nguyen et al. [31] or Mark Nottingham
[33].

Another very effective countermeasure against CPDoS attacks is
the usage of WAFs. Many CDNs provide the option to enable WAFs
in order to protect web applications against malicious requests. To
avoid CPDoS attacks, content providers can configure the WAF to
explicitly block oversized requests, requests with meta characters
or malicious headers. Using WAFs is, however, only effective if the
WAF is implemented in the cache or in front of the cache, so that
harmful requests can be eliminated before they are forwarded to the
origin server. The experiments in Section 5 and the CPDoS attack
of James Kettle on www.tesla.com [20] show that WAFs which are

integrated at the origin server such as ModSecurity do not help
against CPDoS attacks. Requests which are blocked by a WAFs at
the origin can still trigger an error page that is stored by the cache.

Moreover, we recommend adding a subsection to the "Security
Considerations" section of the RFC 7230 [12] to discuss the con-
sequences of non-compliance with the protocol specification in
order to avoid HHO, HMC and other web cache poisoning attacks.
The "Security Considerations" section of RFC 7230 mentions cache-
poisoning attacks including response splitting and request smug-
gling. However, the standard only makes recommendations that
relate to these two specific attacks. The specification does not men-
tion that the source of many cache-related attacks lies in violations
of the standard. Such an additional description would increase de-
velopers’ awareness of compliance with the specifications. HMO
attacks, on the other hand, cannot be avoided by complying with
the standard, as they are based on non-standard means which is
the X-HTTP-Method-Override header in this case. To avoid HMO
attacks while maintaining the scalability, content providers do not
need to exclude the 404 Not Found and 405 Method Not Allowed
error code from caching. Here, vulnerable web frameworks must
follow the approach of Symfony, Lavarel as well as the plugins of
Django and Express.js. These HTTP implementations support the
method overriding headers, but only consider to change the action
when the method in the request line is POST. By this, a 404 Not
Found error page cannot be triggered by malicious GET request,
since method overriding headers are ignored. When trying to poi-
son the cache with a POST request with a method override header
including GET, the returning response is not stored by any tested
cache. Also, the use of non-standard headers is a general approach
to conduct other cache-poisoning attacks as described by James
Kettle [22]. It is the responsibility of HTTP implementations to
carefully integrate non-standard headers to avoid such attacks. To
analyze impact of standardized or non-standard headers in respect
to caches, developers and software testers can use, e.g., the testing
tools of Nguyen et al. [31] and Mark Nottingham [33].

9 CONCLUSION AND OUTLOOK
Vulnerabilities stemming from the semantic gap result in serious
security threats. Distributed systems are especially prone to such
attacks as they are composed by distinct layers. Their existence is
one major prerequisite for the different interpretation of an object,
in this case the application messages floating through the interme-
diaries.

In this paper we extended the known vulnerabilities rooted
in a semantic gap by introducing a class of new attacks, "Cache-
Poisoned Denial-of-Service (CPDoS)". We systematically study how
to provoke errors during request processing on an origin server
and the case, in which error responses get stored and distributed
by caching systems. We introduce three concrete CPDoS attack
variations that are caused by the inconsistent treatment of the
HTTP method override header, header size limits and the parsing
of meta characters. We show the practical relevance by identifying
the amount of available web caching systems that are vulnerable to
CPDoS. The consequences can be severe as one simple request is
sufficient to paralyze a victim website within a large geographical
region (see Figure 8 in Appendix B). Depending on the resource

13

that is being blocked by an error page, the web page or web service
can be disabled piecemeal (see Figure 6 in Appendix A).

According to our experiments 11% of the DoD web sites, 30% of
the Alexa Top 500 websites and 16% of the URLs in the analyzed
HTTP Archive data set are potentially vulnerable to CPDoS attacks.
These cached contents include also mission-critical firmware and
update files. Considering the fact that modern distributed appli-
cations often follow the Mircoservices [29] and Service-Oriented
Architecture (SOA) [10] design principles where services are imple-
mented with different programming languages and are operated by
distinct entities, more semantic gap vulnerabilities may appear in
the future. Hence, a more in-depth understanding of such vulnera-
bilities needs to be gathered in order to develop robust safeguards
that do not depend on particular implementation and concatenation
of system layers.

ACKNOWLEDGMENT
First of all, we would like to thank all reviewers for their thoughtful
remarks and comments.Moreover, wewould especially like to thank
Shuo Chen and James Kettle for their feedback and suggestions.
Finally, we appreciated the disclosure processes with the AWS-
Security team, the Microsoft Security Response Center and the Play
Framework development team.

This work has been funded by the German Federal Ministry of
Education and Research within the funding program "Forschung
an Fachhochschulen" (contract no. 13FH016IX6).

REFERENCES
[1] Amazon. 2019. How CloudFront Processes and Caches HTTP 4xx and 5xx Status

Codes from Your Origin. https://docs.aws.amazon.com/AmazonCloudFront/
latest/DeveloperGuide/HTTPStatusCodes.html

[2] Apache HTTP Server Project. 2019. Security Tips. https://httpd.apache.org/
docs/trunk/misc/security_tips.html

[3] G. Barish and K. Obraczke. 2000. WorldWideWeb caching: trends and techniques.
IEEE Communications Magazine 38, 5 (2000), 178–184. https://doi.org/10.1109/
35.841844

[4] M. Belshe, R. Peon, and M. Thomson. 2015. Hypertext Transfer Protocol Version 2
(HTTP/2). RFC 7540. IETF. https://tools.ietf.org/html/rfc7540

[5] T. Bray. 2016. An HTTP Status Code to Report Legal Obstacles. RFC 7725. IETF.
https://tools.ietf.org/html/rfc7725

[6] A. Chatiron. 2019. Define allowed methods used in ’X-HTTP-Method-Override’.
https://github.com/playframework/play1/issues/1300

[7] J. Chen, J. Jiang, H. Duan, N. Weaver, T. Wan, and V. Paxson. 2016. Host of
Troubles: Multiple Host Ambiguities in HTTP Implementations. In 23th ACM
SIGSAC Conference on Computer and Communications Security (CCS). https:
//doi.org/10.1145/2976749.2978394

[8] G. Clemm and J. Whitehead J. Crawford, J. Reschke. 2010. Binding Extensions
to Web Distributed Authoring and Versioning (WebDAV). RFC 5842. IETF. https:
//tools.ietf.org/html/rfc5842

[9] L. Dusseault. 2007. HTTP Extensions for Web Distributed Authoring and Versioning
(WebDAV). RFC 4918. IETF. https://tools.ietf.org/html/rfc4918

[10] T. Erl. 2007. SOA Principles of Service Design. Prentice Hall PTR.
[11] R. Fielding, M. Nottingham, and J. Reschke. 2014. Hypertext Transfer Protocol

(HTTP/1.1): Caching. RFC 7234. IETF. https://tools.ietf.org/html/rfc7234
[12] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing. RFC 7230. IETF. https://tools.ietf.org/html/rfc7230
[13] R. Fielding and J. Reschke. 2014. Hypertext Transfer Protocol (HTTP/1.1): Semantics

and Content. RFC 7231. IETF. https://tools.ietf.org/html/rfc7231
[14] Flask. 2010. Adding HTTP Method Overrides. http://flask.pocoo.org/docs/1.0/

patterns/methodoverrides/
[15] O. Gil. 2017. WEB CACHE DECEPTION ATTACK. In Blackhat USA. https:

//blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
[16] K. Holtman and A. Mutz. 1998. Transparent Content Negotiation in HTTP. RFC

2295. IETF. https://tools.ietf.org/html/rfc2295
[17] IEEE Spectrum. 2018. Interactive: The Top Programming Languages 2018. https:

//spectrum.ieee.org/static/interactive-the-top-programming-languages-2018

[18] Suman Jana and Vitaly Shmatikov. 2012. Abusing File Processing in Malware
Detectors for Fun and Profit. In 33rd IEEE Symposium on Security and Privacy.
80–94. https://doi.org/10.1109/SP.2012.15

[19] Y. Jia, Y. Chen, X. Dong, P. Saxena, J. Mao, and Z. Liang. 2015. Man-in-the-
browser-cache. Computers and Security 55, C (2015), 62–80. https://doi.org/10.
1016/j.cose.2015.07.004

[20] J. Kettle. 2018. Bypassing Web Cache Poisoning Countermeasures. https:
//portswigger.net/blog/practical-web-cache-poisoning

[21] J. Kettle. 2018. Denial of service via cache poisoning . https://hackerone.com/
reports/409370

[22] J. Kettle. 2018. Practical Web Cache Poisoning. In Blackhat USA. https:
//portswigger.net/blog/practical-web-cache-poisoning

[23] A. Klein. 2004. Divide and Conquer - HTTP Response Splitting, Web Cache
Poisoning Attacks, and Related Topics. White Paper. Sanctum, Inc. https:
//dl.packetstormsecurity.net/papers/general/whitepaper_httpresponse.pdf

[24] C. Linhart, A. Klein, R. Heled, and S. Orrin. 2005. HTTP REQUEST SMUGGLING.
http://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf

[25] L. Masinter. 1998. Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0). RFC 2324.
IETF. https://tools.ietf.org/html/rfc2324

[26] NATIONAL VULNERABILITY DATABASE. 2010. CVE-2010-2730 Detail. CVE
2010-2730. Nist. https://nvd.nist.gov/vuln/detail/CVE-2010-2730

[27] NATIONAL VULNERABILITY DATABASE. 2019. CVE-2019-0941 Detail. CVE
2019-0941. Nist. https://nvd.nist.gov/vuln/detail/CVE-2019-0941

[28] Netcraft. 2019. January 2019 Web Server Survey. https://news.netcraft.com/
archives/2019/01/24/january-2019-web-server-survey.html

[29] S. Newman. 2015. Building microservices: designing fine-grained systems. O’Reilly.
[30] H. V. Nguyen, L. Lo Iacono, and H. Federrath. 2018. Systematic Analysis of Web

Browser Caches. In 2nd International Conference on Web Studies (WS). https:
//doi.org/10.1145/3240431.3240443

[31] H. V. Nguyen, L. Lo Iacono, and H. Federrath. 2019. Mind the Cache: Large-Scale
Analysis of Web Caching. In 34rd ACM/SIGAPP Symposium on Applied Computing
(SAC). https://doi.org/10.1145/3297280.3297526

[32] H. Nielsen and S. Lawrence. 2000. An HTTP Extension Framework. RFC 2774.
IETF. https://tools.ietf.org/html/rfc2774

[33] M. Nottingham. 2019. HTTP Caching Tests. https://cache-tests.fyi/
[34] M. Nottingham and R. Fielding. 2012. Additional HTTP Status Codes. RFC 6585.

IETF. https://tools.ietf.org/html/rfc6585
[35] OWASP. 2017. Denial of Service Cheat Sheet. https://www.owasp.org/index.

php/Denial_of_Service_Cheat_Sheet#Mitigation_3:_Limit_length_and_size
[36] L. Richardson and S. Ruby. 2008. RESTful web services. O’Reilly Media, Inc.
[37] J. Somorovsky,M. Heiderich, M. Jensen, J. Schwenk, N. Gruschka, and L. Lo Iacono.

2011. All Your Clouds Are Belong to Us: Security Analysis of Cloud Management
Interfaces. In 3rd ACM Workshop on Cloud Computing Security Workshop. ACM,
New York, NY, USA, 3–14. https://doi.org/10.1145/2046660.2046664 http://doi.
acm.org/10.1145/2046660.2046664.

[38] C.-A. Staicu and M.l Pradel. 2018. Freezing the Web: A Study of ReDoS Vulnera-
bilities in Javascript-based Web Servers. In 27th USENIX Conference on Security
Symposium (USENIX Security). USENIX Association, Berkeley, CA, USA, 361–376.
http://dl.acm.org/citation.cfm?id=3277203.3277231

[39] S. Triukosea, Z. Al-Qudad, and M. Rabinovich. 2009. Content Delivery Networks:
Protection or Threat?. In 14th European Symposium on Research in Computer
Security (ESORICS). https://doi.org/10.1007/978-3-642-04444-1_23

14

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HTTPStatusCodes.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/HTTPStatusCodes.html
https://httpd.apache.org/docs/trunk/misc/security_tips.html
https://httpd.apache.org/docs/trunk/misc/security_tips.html
https://doi.org/10.1109/35.841844
https://doi.org/10.1109/35.841844
https://tools.ietf.org/html/rfc7540
https://tools.ietf.org/html/rfc7725
https://github.com/playframework/play1/issues/1300
https://doi.org/10.1145/2976749.2978394
https://doi.org/10.1145/2976749.2978394
https://tools.ietf.org/html/rfc5842
https://tools.ietf.org/html/rfc5842
https://tools.ietf.org/html/rfc4918
https://tools.ietf.org/html/rfc7234
https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc7231
http://flask.pocoo.org/docs/1.0/patterns/methodoverrides/
http://flask.pocoo.org/docs/1.0/patterns/methodoverrides/
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://blogs.akamai.com/2017/03/on-web-cache-deception-attacks.html
https://tools.ietf.org/html/rfc2295
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2018
https://doi.org/10.1109/SP.2012.15
https://doi.org/10.1016/j.cose.2015.07.004
https://doi.org/10.1016/j.cose.2015.07.004
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/practical-web-cache-poisoning
https://hackerone.com/reports/409370
https://hackerone.com/reports/409370
https://portswigger.net/blog/practical-web-cache-poisoning
https://portswigger.net/blog/practical-web-cache-poisoning
https://dl.packetstormsecurity.net/papers/general/whitepaper_httpresponse.pdf
https://dl.packetstormsecurity.net/papers/general/whitepaper_httpresponse.pdf
http://www.cgisecurity.com/lib/HTTP-Request-Smuggling.pdf
https://tools.ietf.org/html/rfc2324
https://nvd.nist.gov/vuln/detail/CVE-2010-2730
https://nvd.nist.gov/vuln/detail/CVE-2019-0941
https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-survey.html
https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-survey.html
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.1145/3297280.3297526
https://tools.ietf.org/html/rfc2774
https://cache-tests.fyi/
https://tools.ietf.org/html/rfc6585
https://www.owasp.org/index.php/Denial_of_Service_Cheat_Sheet#Mitigation_3:_Limit_length_and_size
https://www.owasp.org/index.php/Denial_of_Service_Cheat_Sheet#Mitigation_3:_Limit_length_and_size
https://doi.org/10.1145/2046660.2046664
http://doi.acm.org/10.1145/2046660.2046664
http://doi.acm.org/10.1145/2046660.2046664
http://dl.acm.org/citation.cfm?id=3277203.3277231
https://doi.org/10.1007/978-3-642-04444-1_23

APPENDIX A: ILLUSTRATIVE EXAMPLES OF CPDOS ATTACK
A.1 Ethereum-website

Figure 6: These screenshots show the start page of the website ethereum.org and how parts as well as the whole page are
rendered inaccessible due to a successful CPDoS attack. More specifically, this website has been vulnerable to HHO CPDoS.

A.2 Marines-website

Figure 7: These two screenshots show the start page of the website marines.com before a) and after b) a successful CPDoS
attack. More specifically, this website has been vulnerable to HHO CPDoS.

15

APPENDIX B: CPDOS ATTACK SPREAD

Legend: none-affected region, affected region, attacker, origin server

(a)

(b)

Figure 8: Affected CDN regions when sending a CPDoS attack from a) Frankfurt, Germany and b) Northern Virginia, USA to
a victim origin server in Cologne, Germany.

16

	Abstract
	1 Introduction
	2 Foundations
	3 Security Threats in Web Caching Systems
	4 Poisoning Web Caches with Error Pages
	4.1 HTTP Method Override (HMO) Attack
	4.2 HTTP Header Oversize (HHO) Attack
	4.3 HTTP Meta Character (HMC) Attack

	5 Practicability of CPDoS Attacks
	5.1 Experiments Setup
	5.2 Feasibility of HMO attacks
	5.3 Feasibility of HHO attacks
	5.4 Feasibility of HMC attacks
	5.5 Consolidated Review of Analysis Results
	5.6 Practical Impact
	5.7 Practical Considerations

	6 Responsible disclosure
	7 Discussion
	8 Countermeasures
	9 Conclusion and Outlook
	References

